Optimizing Proton Conductivity in Sulfonated Polystyrene Membranes via Phosphorous Pentoxide Doping

Authors

  • Mosiur Rahaman Russell School of Chemical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
  • Khurshida Sharmin Department of Mechanical Engineering, Dhaka University of Engineering & Technology, Gazipur (DUET), Gazipur 1707, Bangladesh

DOI:

https://doi.org/10.38208/ete.v5.766

Keywords:

Proton Conductive membrane, Polystyrene, Phosphorous Pentoxide, Electrochemical Impedance Spectroscopy

Abstract

Recently, Proton conducting membrane fuel cells (PCMFCs) have been recognized as a potential future and excellent medium for efficient power sources. In this present work, Polystyrene has been used to make a proton conductive membrane, mixing with phosphorus pentoxide (P2O5), targeting to achieve low cost and high proton conductivity under low humidity conditions. Several membranes are studied with varying amounts (three compositions: 5 wt.%, 10 wt.%, and 20 wt.%) of P2O5 concerning polystyrene weight and doped in 20% diluted sulfuric acid. It is expected that a new proton transport pathway is provided between the phosphoric acid and sulfuric acid in dry conditions. Results of conductivity, obtained by Electrochemical Impedance Spectroscopy (EIS), have shown excellent proton conductivity at room temperature. The 10 wt.% modified P2O5 membrane exhibited a higher order of proton conductivity, approximately two orders of magnitude compared to pure PS membrane at dry conditions (approximately 10-2 S/cm), which is the highest value among the fabricated membranes.  The Fourier transform infrared spectrometer (FTIR) analysis confirmed the sulfonation of the modified membranes. These membranes are also characterized by scanning electron microscopy (SEM) and tensile test. The tensile test showed the highest strength of 1.8 MPa; while the SEM images proved the porous structure of the membranes, which is helpful to improve the proton conducting membrane (PCM) structure. So, the 10 wt.% P2O5 modified membrane Is a promising candidate as a novel PCM and have potential applications for use in fuel cells.

References

Ahmad, M. I., Zaidi, S. M. J., & Rahman, S. U. (2006). Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. Desalination, 193(1–3), 387–397. https://doi.org/10.1016/J.DESAL.2005.06.069

Ali, A. A., Al-Othman, A., & Tawalbeh, M. (2024). Exploring natural polymers for the development of proton exchange membranes in fuel cells. Process Safety and Environmental Protection, 189, 1379–1401. https://doi.org/10.1016/j.psep.2024.06.130

Bi, C., Zhang, H., Zhang, Y., Zhu, X., Ma, Y., Dai, H., & Xiao, S. (2008). Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications. Journal of Power Sources, 184(1), 197–203. https://doi.org/10.1016/j.jpowsour.2008.06.019

Bose, S., Kuila, T., Nguyen, T. X. H., Kim, N. H., Lau, K. T., & Lee, J. H. (2011). Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science, 36(6), 813–843. https://doi.org/10.1016/J.PROGPOLYMSCI.2011.01.003

De Bonis, C., Cozzi, D., Mecheri, B., D’Epifanio, A., Rainer, A., De Porcellinis, D., & Licoccia, S. (2014). Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochimica Acta, 147, 418–425. https://doi.org/10.1016/j.electacta.2014.09.135

Gao, S., Chen, X., Xu, H., Luo, T., Ouadah, A., Fang, Z., Li, Y., Wang, R., Jing, C., & Zhu, C. (2018). Sulfonated graphene oxide-doped proton conductive membranes based on polymer blends of highly sulfonated poly(ether ether ketone) and sulfonated polybenzimidazole. Journal of Applied Polymer Science, 135(37). https://doi.org/10.1002/app.46547

Guo, Z., Perez-Page, M., Chen, J., Ji, Z., & Holmes, S. M. (2021). Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells. In Journal of Energy Chemistry (Vol. 63, pp. 393–429). Elsevier B.V. https://doi.org/10.1016/j.jechem.2021.06.024

Han, Y., Xu, F., Ji, J., Li, Y., Chu, F., & Lin, B. (2024). Phosphoric acid-doped cross-linked poly(phenylene oxide)-based membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 50, 1417–1426. https://doi.org/10.1016/J.IJHYDENE.2023.07.125

Hooshyari, K., Rezania, H., Vatanpour, V., Salarizadeh, P., Askari, M. B., Beydaghi, H., & Enhessari, M. (2020). High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells. Journal of Membrane Science, 612, 118436. https://doi.org/10.1016/J.MEMSCI.2020.118436

Kowsari, E., Zare, A., & Ansari, V. (2015). Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. International Journal of Hydrogen Energy, 40(40), 13964–13978. https://doi.org/10.1016/J.IJHYDENE.2015.08.064

Lee, S. Y., Scharfenberger, G., Meyer, W. H., & Wegner, G. (2006). A new water-free proton conducting membrane for high-temperature application. Journal of Power Sources, 163(1), 27–33. https://doi.org/10.1016/J.JPOWSOUR.2006.04.021

Li, J., Azizi, A., Zhou, S., Liu, S., Han, C., Chang, Z., Pan, A., & Cao, G. (2024). Hydrogel polymer electrolytes toward better zinc-ion batteries: a comprehensive review. EScience, 100294. https://doi.org/10.1016/j.esci.2024.100294

Maiti, T. K., Singh, J., Majhi, J., Ahuja, A., Maiti, S., Dixit, P., Bhushan, S., Bandyopadhyay, A., & Chattopadhyay, S. (2022). Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints. Polymer, 255, 125151. https://doi.org/10.1016/J.POLYMER.2022.125151

Mecheri, B., D’Epifanio, A., Traversa, E., & Licoccia, S. (2008). Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. Journal of Power Sources, 178(2), 554–560. https://doi.org/10.1016/j.jpowsour.2007.09.072

Mirfarsi, S. H., Parnian, M. J., & Rowshanzamir, S. (2020). Self-humidifying proton exchange membranes for fuel cell applications: Advances and challenges. In Processes (Vol. 8, Issue 9). MDPI AG. https://doi.org/10.3390/pr8091069

Misenan, M. S. M., Farabi, M. S. A., Akhlisah, Z. N., & Khiar, A. S. A. (2025). Enhancing polymer electrolytes with carbon nanotube fillers: A promising frontier. Next Materials, 7, 100365. https://doi.org/10.1016/j.nxmate.2024.100365

Mohamad Nor, N. A., Mohamed, M. A., & Jaafar, J. (2022). Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. In Journal of Industrial and Engineering Chemistry (Vol. 116, pp. 32–59). Korean Society of Industrial Engineering Chemistry. https://doi.org/10.1016/j.jiec.2022.09.006

Mohanta, J., Singh, U. P., Panda, S. K., & Si, S. (2016). Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3). https://doi.org/10.1088/2043-6262/7/3/035011

Moorthy, S., Sivasubramanian, G., Kannaiyan, D., & Deivanayagam, P. (2023a). Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells - A versatile review. In International Journal of Hydrogen Energy (Vol. 48, Issue 72, pp. 28103–28118). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2023.04.005

Moorthy, S., Sivasubramanian, G., Kannaiyan, D., & Deivanayagam, P. (2023b). Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells - A versatile review. In International Journal of Hydrogen Energy (Vol. 48, Issue 72, pp. 28103–28118). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2023.04.005

Munavalli, B. B., Naik, S. R., & Kariduraganavar, M. Y. (2018a). Development of robust proton exchange membranes for fuel cell applications by the incorporation of sulfonated ?-cyclodextrin into crosslinked sulfonated poly(vinyl alcohol). Electrochimica Acta, 286, 350–364. https://doi.org/10.1016/j.electacta.2018.08.036

Munavalli, B. B., Naik, S. R., & Kariduraganavar, M. Y. (2018b). Development of robust proton exchange membranes for fuel cell applications by the incorporation of sulfonated ?-cyclodextrin into crosslinked sulfonated poly(vinyl alcohol). Electrochimica Acta, 286, 350–364. https://doi.org/10.1016/j.electacta.2018.08.036

Naumi, F., Natanael, C. L., Rahayu, I., Indrarti, L., & Hendrana, S. (2018). Polymer Electrolyte Membrane Fuel Cell based on Sulfonated Polystyrene and Phosphoric Acid with Biocellulose as a Matrix. Research Journal of Chemistry and Environment 22, 289-293. https://www.worldresearchersassociations.com/SpecialIssueAugust2018/51.pdf

Nayak, J. K., Shankar, U., & Samal, K. (2023). Fabrication and development of SPEEK/PVdF-HFP/SiO2 proton exchange membrane for microbial fuel cell application. Chemical Engineering Journal Advances, 14, 100459. https://doi.org/10.1016/J.CEJA.2023.100459

Nguyen, A. G., & Park, C. J. (2023). Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. In Journal of Membrane Science (Vol. 675). Elsevier B.V. https://doi.org/10.1016/j.memsci.2023.121552

Nimir, W., Al-Othman, A., Tawalbeh, M., Al Makky, A., Ali, A., Karimi-Maleh, H., Karimi, F., & Karaman, C. (2023). Approaches towards the development of heteropolyacid-based high temperature membranes for PEM fuel cells. International Journal of Hydrogen Energy, 48(17), 6638–6656. https://doi.org/10.1016/J.IJHYDENE.2021.11.174

Rowshanzamir, S., Peighambardoust, S. J., Parnian, M. J., Amirkhanlou, G. R., & Rahnavard, A. (2015). Effect of Pt-Cs2.5H0.5PW12O40 catalyst addition on durability of self-humidifying nanocomposite membranes based on sulfonated poly (ether ether ketone) for proton exchange membrane fuel cell applications. International Journal of Hydrogen Energy, 40(1), 549–560. https://doi.org/10.1016/j.ijhydene.2014.10.134

Shalaby, S. M., Bek, M. A., & El-Sebaii, A. A. (2014). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews, 33, 110–116. https://doi.org/10.1016/J.RSER.2014.01.073

Sherafat, Z., Paydar, M. H., Antunes, I., Nasani, N., Brandão, A. D., & Fagg, D. P. (2015). Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3??. Electrochimica Acta, 165, 443–449. https://doi.org/10.1016/J.ELECTACTA.2015.03.018

Yue, Z., Cai, Y. Ben, & Xu, S. (2016a). Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications. Journal of Membrane Science, 501, 220–227. https://doi.org/10.1016/J.MEMSCI.2015.11.045

Yue, Z., Cai, Y. Ben, & Xu, S. (2016b). Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications. Journal of Membrane Science, 501, 220–227. https://doi.org/10.1016/j.memsci.2015.11.045

Yue, Z., Cai, Y. Ben, & Xu, S. (2016c). Phosphoric acid-doped organic-inorganic cross-linked sulfonated poly(imide-benzimidazole) for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 41(24), 10421–10429. https://doi.org/10.1016/j.ijhydene.2015.10.057

Zhang, Y., Zhang, H., Bi, C., & Zhu, X. (2008). An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application. Electrochimica Acta, 53(12), 4096–4103. https://doi.org/10.1016/j.electacta.2007.12.045

Published

2025-08-02

How to Cite

Rahaman, M., & Sharmin, K. . (2025). Optimizing Proton Conductivity in Sulfonated Polystyrene Membranes via Phosphorous Pentoxide Doping. Energy and Thermofluids Engineering, 5, 35-41. https://doi.org/10.38208/ete.v5.766