Free Vibration Analysis of Thick Isotropic Plate by Using 5th Order Shear Deformation Theory

Authors

  • Param D. Gajbhiye Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat-395007, G.J., India
  • Vishisht Bhaiya Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat-395007, G.J., India
  • Yuwaraj M. Ghugal Department of Applied Mechanics, Government Engineering College, Karad, Satara-415124, M.S., India

DOI:

https://doi.org/10.38208/pcse.v1i1.2

Keywords:

Thick isotropic plate, 5th OSDT, Free Vibration, Navier solution, Non-dimensional frequencies

Abstract

In the present study, a 5th order shear deformation theory (5th OSDT) is presented for free vibration analysis of simply supported thick isotropic plates. Governing equations and boundary conditions are evaluated using the concept of virtual work. Numerical results for free vibration analysis include the effects of side to thickness and plate aspect ratios for simply supported thick isotropic plates. Non-dimensional bending mode frequencies, non-dimensional thickness shear mode frequencies and non-dimensional thickness stretch mode frequencies are obtained. Closed form analytical solutions for simply supported isotropic thick plates subjected to single sinusoidal distributed loads are obtained for comparison purpose. The problems considered in this study are solved using MATLAB software. Non-dimensional bending frequencies and non-dimensional thickness shear mode frequencies obtained through the 5th OSDT match well with the exact analytical and exponential shear deformation theory (ESDT) results. Further, the non-dimensional thickness stretch mode frequencies are found to be imaginary.

References

Kirchhoff, G.R., 1850, Uber das gleichgewicht und die bewegung einer elastischen scheibe, Journal of Reine Angew. Math.(Crelle) 40: pp.51-88.

Kirchhoff G.R., 1850, Uber die schwingungen einer kriesformigen elastischen scheibe, Poggendorffs Annalen 81: pp.258-264.

Timoshenko, S. P., and Krieger, W. S., Theory of Plates and Shells, McGraw-Hill Publication, Second edition, 1959.

Jemielita, G., “On the Winding Paths of the Theory of Plates”, Journal of Theoretical and Applied Mechanics (MechanikaTeoretyczna I Stosowana), Vol. 2, No. 31, pp. 317-327, 1993.

Reisner, E., “The Effect of Transverse Shear Deformation on The Bending of Elastic Plates”, ASME Journal of Applied Mechanics, Vol. 12, pp. A69-A77, 1945.

Levy, M., “Memoire sur la Theorie des Plaques Elastiques Planes”, Journal des Mathematiques Pures et Appliqees, Vol. 30, pp.219-306, 1877.

Mindlin, R. D., “Influence of Rotary Inertia and Shear on Flexure Motions of Isotropic, Elastic Plates”, ASME Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951.

Hencky, H., “Uber die Berucksichtigung der Schubverzerrung in Ebenen Platten”, Ingenieur Archiv, Vol. 16, pp. 72-76, 1947.

Kromm, A., “Verallgemeinerete Theorie der Plattenstatik”, Ingenieur Archiv, Vol. 21, pp. 266-286, 1953.

Lo, K. H., Christensen, R. M. and Wu E. M., “A Higher Order Theory of Plate Deformation, Part 1: Homogeneous Plates”, ASME Journal of Applied Mechanics, Vol. 44, pp. 663-668, 1977.

Lo, K. H., Christensen, R. M. and Wu, E. M., “A Higher Order Theory of Plate Deformation, Part 2: Laminated Plates”, ASME Journal of Applied Mechanics, Vol. 44, pp. 669-676, 1977.

Ghugal, Y. M., and Shimpi, R. P., “A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates”, Journal of Reinforced Plastics and Composites, Vol. 21, No. 9, pp. 775-813, 2002.

Sayyad, A. S., and Ghugal, Y. M., “On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Review of Recent Literature with some Numerical Results”, Composite Structures, Vol. 129, pp. 177-201, 2015.

Srinivas, S., Joga Rao, C. V., Rao, A. K., An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates, Journal of sound and vibration 12(2) (1970) 187–199.

G. Shi, A new simple third-order shear deformation theory of plates, Int. J. Solids Struct. 44 (2007) 4399–4417.

H. Akhavan, S. H. Hashemi, H. R. Damavanditaher, A. Alibeigloo and S. Vahabi, Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis, Comput. Mat. Sci. 44, 968–978, 2009

Sayyad A. S., Ghugal Y. M., “Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory”, Applied and Computational Mechanics, Vol. 6, 2012, pp. 65-82.

Ghugal, Y. M., Sayyad, A. S., Free vibration of thick orthotropic plates using trigonometric shear deformation theory, Latin American Journal of Solids and Structures 8 (2010) 229–243.

Reddy, J. N., “A Simple Higher Order Theory for Laminated Composite Plates”, ASME Journal of Applied Mechanics, Vol. 51, No. 4, pp. 745-752, 1984.

Reddy, J. N., Mechanics of Laminated and Composite Plates and Shell Theory and Analysis, 2nd edition, CRC Press, Boca Raton, FL, 2004.

Reza Serajian and Said Asadi., Exact Solutions for Free Vibration Analysis of Thick Laminated Annular or Circular Plates Using Third-Order Shear Deformation Plate Theory.

Thai, H.T. and Kim, S.E., (2010) “Free vibration of laminated composite plates using two variable refined plate theory”, Int. J. of Mechanical Sciences, 52:626–633.

Amale Mahi, Abbas Adda, Bedia, Abdelouahed Tounsi b, “A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates”Volume 39, Issue 9, pp. 2453-2814, 2015

Pagano N. J., “Exact Solutions for Bi-directional Composite and Sandwich Plates”, Journal of Composite Material, Vol. 4, pp.20-34, 1970.

Carrera, E., “Temperature Profile Influence on Layered Plates Response Considering Classical and Advanced Theories”, AIAA Journal, Vol. 40, No. 9, pp. 1885-1896, 2002.

Rohwer, K., Rolfes, R., and Sparr, H., “Higher-order Theories for Thermal Stresses in Layered Plates”, International Journal of Solids and Structures, Vol. 38, pp. 3673-3687, 2001.

Ghugal, Y. M. and Gajbhiye, P. D., Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory.,” Journal of Applied and Computational Mechanics 2(2):80-95 DOI: 10.22055/jacm.2016.12366

Published

2021-02-26

How to Cite

Gajbhiye, P. D., Bhaiya, V., & Ghugal, Y. M. (2021). Free Vibration Analysis of Thick Isotropic Plate by Using 5th Order Shear Deformation Theory. Progress in Civil and Structural Engineering, 1(1), 1-11. https://doi.org/10.38208/pcse.v1i1.2