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 Abstract:  

In the field of dynamic soil-structure interaction, the simulation of geotechnical massifs 

under non-vanishing time-averaged loads is often challenging, depending on factors such as 

load variations, the 3D model representation and the chosen model boundaries. This study 

aims to evaluate the effectiveness of the method developed recently by the authors under 

non-vanishing time-averaged loads. The evaluation involves comparing the results of a 

homogeneous axisymmetric model at two control points and the simulation of an 

axisymmetric bilayer. The aim is to demonstrate the robustness of the method in contrast to 

widely used dissipative devices in scenarios involving sudden loading. Using an implicit 

integration scheme in the time domain, the method is shown to be effective and correlations 

with reliable solutions and comparisons with common dissipative devices for sudden-load 

models are presented. This analysis leads to the conclusion that the proposed procedure 

adeptly addresses the challenges associated with the simulation of geotechnical masses 

under non-vanishing time-averaged loads. 
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1. Introduction 

When performing dynamic simulations of soil-structure 

interaction, it is crucial to carefully consider the choice of 

model to ensure accurate representation of the physical 

parameters. The use of a 3D model is often associated with 

higher computational costs, while the choice of a 

simplified model can lead to significant discrepancies in 

response and problematic solutions. However, the 

representation should also take into account the loading 

scenario, the characteristics of the medium and the ability 

of the model to dissipate additional energy at the 

boundaries. If adequate boundaries are not established to 

manage excessive motion, waves may be reflected back 

into the structure rather than propagating out of the 

model. Consequently, a differential equation based 

solution may result in inaccurate field measurements 

(Donida et al, 1988). 

Several numerical methods have been developed to 

address this issue, including the boundary element method 

(Mansur, 1983; Antes, 1985), viscous boundaries (Lysmer 

& Kuhlemeyer, 1969), and infinite elements (Bettess, 

1977).  

The boundary element method is classified as a rigorous 

limit method that does not necessitate a high level of 

domain discretisation. Nevertheless, the coupled stiffness 

matrix is fully populated and asymmetric. In the lower 

part, the coefficient matrix no longer retains its band 

structure (von Estorff & Prabucki 1990). On the other 

hand, the application of the standard viscous boundary 

through the finite element method is straightforward. 
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However, this boundary depends on the angle of incidence 

of the wave and does not take into account the static 

behaviour of the far field, which leads to asymptotic 

divergences. 

The use of infinite elements for this model has largely been 

in the frequency domain, cloning techniques that require 

the calculation of the inverse fast Fourier transform 

(Bettess & Bettess 1991, Yun et al 2007, Seo et al 2007, 

and Kazakov 2010, 2012). However, the existence of 

various types of waves complicates this method, 

prompting some research in the time domain. Haggblad 

and Nordgreen (1987), Su and Wang (2013), and Edip et al. 

(2013) suggested employing an absorbing layer combined 

with an inverse formulation of the infinite element to 

enhance its performance. Bakhtaoui and Chelghoum (2018 

& 2020) have further expanded this approach to a direct 

formulation utilizing 4 and 6 node elements (Bakhtaoui 

2024). However, although the validity has been 

demonstrated in defined dynamic applications, it remains 

useful to explore this new concept in different dynamic 

situations. 

The aim of this paper is to present and test a method, 

developed by Bakhtaoui and Chelghoum (2020), for 

modelling the far field on two axisymmetric geotechnical 

cases under different mesh conditions.  The main objective 

is to evaluate the performance of this method in dynamic 

scenarios, such as sudden actions on a foundation, such as 

the snapping of a transmission tower cable or the effect of 

pile driving. 

The paper revisits the formulation of the method, applied 

to a direct infinite 4-node element, and emphasises tests 

conducted to evaluate its performance through an implicit 

integration scheme in the time domain. These tests include 

non-vanishing time-averaged loads, reproducing reference 

dynamic scenarios (Simon & Randolph 1986, Shridhar & 

Chandrasekaran 1995). In addition, the paper extends 

previous research (Bakhtaoui and Chelghoum 2020) by 

comparing results at two control points for a 

homogeneous axisymmetric model. It further extends this 

analysis to simulate an axisymmetric bilayer, as presented 

in the works of Simon & Randolph (1986) or Shridhar & 

Chandrasekaran (1995). The results of these comparisons 

confirm the robustness of the proposed method with 

respect to several dissipative devices commonly used in 

models subjected to sudden loading. 

 

2. Methodology 

2.1. Formulation of direct infinite elements 

As defined by Bettess (1977, 1980), the direct infinite 

element can be obtained from interpolation functions 

obtained from a standard 3-nodal finite element based on 

Lagrange polynomials defined for i=1 to n-1 and specific 

decay formulations. Therefore, according to the 

conventions of Figure (1), these include the following 

interpolation expressions N
i
(,): 
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Which, when combined with decay functions fi() in 

exponential form, lead to the expressions of the 

displacement functions H
i
(,)  of the direct infinite 

element Bettess 1980, 1984) : 

[H] = [               

] (2) 

The decay function are defined in this case by: 

𝑓1 = 𝑒
−1−𝜉

𝐿   , 𝑓1 = 𝑒
−𝜉

𝐿  (3) 

Local coordinates η and ξ are defined such as ]1,1[ 

and ],1[  , while L determine the decrease ratio. 

Stiffness and mass matrices for the direct infinite 

elements 

The stiffness matrix [K
e
] for an element is given by the 

virtual work theorem in the same way as for the finite 

elements by: 

[Ke]= =   (4) 

[B]: deformation matrix. 

[D]: material matrix. 

t: is the thickness of the element 

 

Figure 1. Local and global representation of an infinite element 
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Following the approach proposed by Hinton et al. (1976), 

the evaluation of the mass to be assigned to each node of 

the infinite element is based on the concept of the 

consistent mass matrix [Mc], while the numerical 

integrations of the expressions are performed by the 

quadrature Gauss-Laguerre (Pissanetzky 1983).   

2.2. Implementation of the viscous boundary in the 

proposed method 

Developed and implemented by Lysmer and Kuhlemeyer 

(1969), viscous boundaries are widely used to simulate 

soil-structure interaction to avoid reflection by wave 

induction. Based on the formulation of normal and shear 

stresses, they are considered in this model for use in 

axisymmetric cases (Figure 2). Their expressions at the 

nodes of the boundary are given before plan generation by 

𝝈 = −𝒂. 𝝆. 𝑽𝒑. 𝒖̇𝒏   (5) 

𝝉 = −𝒃. 𝝆. 𝑽𝒔. 𝒖̇𝒕  

ρ is the density of the medium 

Written in following nodal form: 

 [
𝜎
𝜏

] =   [𝐷∗][𝑈̇𝑁]  =  −  [
𝑎𝜌𝑉𝑃 0

0 𝑏𝜌𝑉𝑆
] [

𝑢̇𝑛

𝑣̇𝑠
]  (6)

 In these expressions, [D*] is the matrix of nodal damping 

and [𝑈̇𝑁] is the normal and tangential vector of velocities. 

Vp and Vs are the velocities of P (compression) and S 

(Shear) waves, respectively, while a and b are coefficients 

suggested by White et al (1977), for taking into account of 

the direction of the incident wave. To maximize the 

absorption rate of P and S wave of the viscous boundary 

we take a = b=1. 

Based on the work of Bakhtaoui and Chelghoum (2020), 

the scheme proposes an absorbing layer in the form of 

damping to ensure the dissipation of the wave, while the 

elastic recovery is performed by the direct infinite 

element. At the absorbing interface (Figure 3), the wave is 

 

Figure 2. planar viscous boundary 

Figure 3. Absorbing interface schematization 

transferred from the finite to the infinite element, thus 

ensuring the continuity of the stresses σ and τ.  Established 

for each side of the interface elements facing the waves 

propagating from the origin, the coherent damping matrix 

(representing the absorbing layer) is given by: 

          sHH d
S

TT

PDPC 
*

 (7)  

Where P is the projection matrix relating normal and 

tangential velocities to the global Cartesian velocities 

components, while [H] is the matrix of displacement 

interpolation functions of interface finite element. The 

damping elements are calculated using a 2 points Gauss-

Legendre numerical integration on each concerned side. 

Using diagonal damping matrix form, similar method 

basing on Hinton scheme (Hinton et al 1976) can be used. 

Hence, each type of dissipative system can be implicitly 

combined in the formulation of the global equations. 

3. Applications 

The above procedure is used to model a mass of soil 

subjected to a non-vanishing time-averaged load. This is 

carried out by original software developed in the FORTRAN 

language. In this test, the region of interest is represented 

by finite elements, while the far field domain is discretised 

using the direct-absorbing infinite elements described 

above. The masses and rigidities are evaluated using 

Gaussian numerical integration, while the resolution is 

performed using a step-by-step implicit integration 

algorithm. 

The present applications consist in evaluating the response 

of geological masses with flexible bases, subjected to 

vertical loads with a non-zero time average. These 

applications are directly derived from the work of Simons 

and Randolph (1986), Wolf (1988), Shridhar and 

Chandrasekaran (1995). The use of these applications 

makes it possible to test the method by comparing the 

results obtained with those given in these references. 

This type of loading can be encountered in some dynamic 

problems, such as the foundation for a transmission line 
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tower when the cables snap on one side, or pile driving 

analysis. For both selected applications, the load is applied 

suddenly at time t=0 and then held static. According to the 

Fourier transform, the load (Heavyside) gives low 

frequency components. The corresponding wavelengths 

are large, in which case the element models are suitable 

for solving the problem. It is worthy to note, in these 

examples, the parameters were given without units, in 

order to be consistent with references examples. 

3.1. First Application:  homogeneous elastic half-space 

case 

A sudden vertical load is applied over a circular area of unit 

radius on the surface of a homogeneous linear elastic half-

space and then is maintained constant thereafter. This 

pulse could, representing the effect of a sudden load on an 

elastic infinite medium, can be evaluated by the analytic 

displacement solution given by Timoshenko and Goodier 

(1951): 

𝛿 =
2𝑞𝑟(1−𝜐2)

𝐸
    (8) 

Where q is the unit load applied on the circular area. r is 

the unit radius of this disk, while E and υ are respectively 

the young and Poisson modulus. The values of these 

parameters are given on figure 4. The solution can also be 

checked by using a reference model, which can be 

obtained by extending the mesh elements with rigid 

boundary conditions. So that the wave after hitting the 

wall of reflection will not have time to disrupt the solution. 

The extended model used in this first application is 

represented by a 30x30 mesh (Figure 4.a), while the model 

used for testing consists of a 9x9 mesh (Figure 4.b) on 

which various boundary conditions will be tested, such as 

rigid condition, viscous boundaries, infinite boundaries and 

the proposed procedure (Figure 4.c). 

The finite elements or infinite elements size, composing 

the mesh, Δx=Δz are taken equal to unity. With a 

propagation velocity Vp = 1.732 m/s   and   Vs = 1m/s. 

The time integration is carried out with Δt=0.025 s. The 

complementary data used are υ = 0.25, E = 2.5, Density = 1, 

and Thickness = 1. 

 This gives a constant static displacement δ=0.75 

Results 

From the vertical displacement at point A (Figure 5) given 

by the extended model, the response reaches a maximum 

value and then stabilises at the static displacement value, 

which is considered to be the real solution to the problem. 

Compared to the extended model, the discrepancy shown 

when using the rigid model (on 9X9 mesh) is clearly visible 

from the 12th second and the solution becomes distorted 

thereafter. This is also the case for the response given by 

ordinary infinite elements, which oscillates around the 

static solution with significant peak differences from the 

22nd second. This highlights the negative behaviour of 

static boundaries in dynamic problems. 

 

(a) 

 

(b) 

 

(c) 

Figure 4. (a) The large model, (b) The used model, (c) model of 

method proposed 
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Figure 5. Comparison of verticals responses at point A  

The response obtained by viscous boundaries exhibits until 

20 seconds an excellent behavior. After that the solution 

starts to deviate asymptotically from the true solution, 

while the results given by the present procedure shows 

good agreement with the reference solution, and provides 

an excellent behavior until 40 seconds confirming the good 

performance of the proposal. 

This trend can also be seen in Figure 6, where we can 

observe the evolution of the divergences through the 

responses at point B located at x=4m, and y=4m. The 

different curves obtained confirm the stability of the 

solution by the proposed procedure with respect to the 

extended model, while the response of the viscous 

boundary diverges asymptotically. 

Using Simon and Randolf (1986) and Shridhar and 

Chandrasekaran (1995) results, the new solution based on 

a refined mesh (in order to approach the 8 noded 

elements used by authors), shows also good performance 

compared to those obtained by viscous boundary and 

extrapolation algorithm (Figure 7). 

 

 

Figure 6. Comparison of verticals responses at point B 

 

Figure 7. Comparison the responses with other procedures 

3.2. Second Application: Response of a two-layered 

medium 

Used by Shridhar & Chandrasekaran (1995) for validation 

testing’s on the extrapolation algorithm used on the 

boundaries, this application considers a two-layered 

medium subjected to the same sudden load applied by a 

circular area of unit-radius as previously defined. In order 

to approach the 8 noded elements used by authors, the 

finite element size is taken as Δx=Δz=0.5, that gives a 

60x60 meshing for the reference model. The testing 

models used and geotechnical characteristics are given in 

Figure 8.  

Results 

Highlighted by results of the previous application, solutions 

obtained by rigid boundaries and infinite elements without 

absorbing layers present divergences more important than 

which obtained with other presented procedures (Figure 

9). It is interesting to note that, in the absence of  

 

Figure 8. Two-layer model under a Heavyside loading 
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Figure 9. Comparison with responses obtained by direct infinite 

elements and rigid boundaries 

 

Figure 10. Comparison with responses obtained by extrapolation 

algorithm and by viscous boundary 

gravitational loading, a study window can be determined 

when the oscillation axis is intersected by the response, as 

shown in Figures 9 and 10. In this case, the value of 0.625, 

which is an approximation of the exact static solution, at 

the oscillation axis. It determines a widow response of 40 

seconds when using the procedure, which displays better 

results related to the reference solution than those 

obtained with the extrapolation algorithm or the viscous 

boundary (Figure 10). 

4. Conclusions 

This paper presents, implements and simulates a specific 

boundary for the simulation of axisymmetric geological 

massifs subjected to dynamic non-vanishing time-averaged 

loads in time domain. The models, represented by finite 

elements in the near field, employ direct infinite elements 

coupled with absorbing layers in the far field. In other 

words, from the viscous formulation, the impedances 

resulting from the passage of the wavefront are added to 

the direct infinite elements in order to ensure dissipation, 

while the latter is responsible for elastic recovery. 

Simulations tested on the two cases of wave propagation, 

lead to the following conclusions: 

1) The procedure is easy to implement using the classical 

finite element method. 

2) The procedure, allowing a reduction in the number of 

elements and nodes, and can be applied to the solution of 

axisymmetric 3D problems according to a study window 

that can be determined by cutting off the oscillation axis. 

3) The procedure can be used effectively for the usual 

dynamic problems in the time domain, including the case 

of axisymmetric bilayers. 
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