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Abstract 
 
A four-nodded rectangular plate bending element 
evaluate the two soil parameter for Vlasov foundation the modulus of elasticity and 
to the top of bottom rigid base. All the deformation stiffness matrix of plate and subsoil are 
code is developed and convergence study is carried out and then some realistic cases of 
to determine the static response. The results, thus obtained, are comp
extremely well for thin plates and convergence rate is
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1. Introduction 
Analyses of plates on elastic foundations have 
applications in aerospace, civil and mechanical 
Developing more realistic foundation models
methods to solve this complex soil-structure interaction 
problem are very important for safe and economical design. 
Majority of the problems cannot be solved by t
approach, led use the numerical techniques
element method. 
In analysis of plates resting on the elastic foundation using 
the Winkler model, a single parameter model
shear deformations between closely spaced elastic springs.
Widely used Winkler model main discrepancies are the 
discontinuity in the soil displacement between the soil under 
the structure and that outside the structure. To overcome the 
discrepancies of Winkler model two-parameter foundation 
models developed by Hetenyi [1], Filonenko Borodich [2], 
and Pasternak [3] provide for the displacement continuity of 
the soil medium by adding of a second spring which 
interacts with the first spring of the Winkler model. Vlasov 
and Leont’ev [4] developed a new concept on two
model that has the advantage of determining soil parameters 
depending on soil material properties, modulus of elasticity 
and Poisson’s ratio (Es,νs) and the thickness of the 
(H) by introducing a third parameter, γ, to characterize the 
vertical deformation profile within the soil continuum [
Vallabhan and Das [6] determined the, γ parameter as a 
function of the characteristic of the structure and the 
foundation using an iterative procedure and named this 
model as modified Vlasov model .The γ parameters depend 
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plate bending element based on Kirchhoff theory resting on elastic foundation using modified Vlasov model
evaluate the two soil parameter for Vlasov foundation the modulus of elasticity and Poisson ratio of the soil is assumed constant from top surface 

All the deformation stiffness matrix of plate and subsoil are evaluated using finite element method.
code is developed and convergence study is carried out and then some realistic cases of plate under static load on elastic foundations are solved 

response. The results, thus obtained, are compared, with the available results obtained by other researchers. It
and convergence rate is high. 

foundation, finite element and modified Vlasov. 
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and mechanical engineering. 

foundation models and simplified 
structure interaction 

problem are very important for safe and economical design. 
Majority of the problems cannot be solved by theoretical 

use the numerical techniques like finite 
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model neglects the 
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discontinuity in the soil displacement between the soil under 
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parameter foundation 
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on the properties of the soil, the depth of the soil or rigid 
base and the structure as well as the type and magnitude of 
the loading. The analysis of plates res
foundations is the great interest of researcher and vast area 
of various research studies. Buczkowski and Torbacki [
developed an 18- node isoparametric interface element of 
zero-thickness that account for shear deformation of the 
plate, details analyzed thick plates resting on two
elastic foundation. Daloglu and Ozgan [
iterative method to determine the subsoil depth affected 
from the load on the plate resting on elastic foundation using 
stress distribution within the subsoil depending on the 
loading and dimension of the plate. Ozgan and Daloglu [
investigate in details the effect of transverse shear strains on 
thin and the thick four-nodded
plate resting on elastic foundation using modified Vlasov 
model. Turhan [14] studied in details thin plate resting on 
elastic foundation using modified Vlasov model using FEM. 
W.T. Straughan [11] studied in details thin plate resting on 
elastic foundation using m
FDM.Mishra and Chakrabarti [
contact effects on the behavior of rectangular plates resting 
on tensionless elastic foundation using finite element 
method. Celik and Saygun [
formulation for plates on elastic foundation incorporating 
the shear deformations in the behaviour of the plate, and the 
effect of subsoil is considered as a combination of elastic 
bending and shear deformation of the soil.
In the present paper, a
bending element based on Kirchhoff theory resting on elastic 
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resting on elastic foundation using modified Vlasov model. For 
sson ratio of the soil is assumed constant from top surface 

d using finite element method. A Matlab 
load on elastic foundations are solved 

obtained by other researchers. It behaves 

on the properties of the soil, the depth of the soil or rigid 
base and the structure as well as the type and magnitude of 
the loading. The analysis of plates resting on elastic 
foundations is the great interest of researcher and vast area 
of various research studies. Buczkowski and Torbacki [8], 

node isoparametric interface element of 
account for shear deformation of the 

details analyzed thick plates resting on two-parameter 
elastic foundation. Daloglu and Ozgan [9] developed an 
iterative method to determine the subsoil depth affected 
from the load on the plate resting on elastic foundation using 

n the subsoil depending on the 
loading and dimension of the plate. Ozgan and Daloglu [10] 
investigate in details the effect of transverse shear strains on 

nodded and eight-nodded Mindlin 
plate resting on elastic foundation using modified Vlasov 

] studied in details thin plate resting on 
elastic foundation using modified Vlasov model using FEM. 

] studied in details thin plate resting on 
undation using modified Vlasov model using 

Mishra and Chakrabarti [12] investigated shear and 
contact effects on the behavior of rectangular plates resting 
on tensionless elastic foundation using finite element 
method. Celik and Saygun [13] developed a finite element 
formulation for plates on elastic foundation incorporating 
the shear deformations in the behaviour of the plate, and the 
effect of subsoil is considered as a combination of elastic 
bending and shear deformation of the soil. 

a four-nodded rectangular plate 
bending element based on Kirchhoff theory resting on elastic 
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foundation using modified Vlasov model analysis by finite 
element method. Convergence rate, accuracy and 
applicability of the present formulation for static analysis of 
plate on Vlasov foundation are demonstrated through 
number of numerical examples. 

2. Methodology  

2.1 Development of the theory of Vlasov model 

The total potential energy in the soil-structure system may 
be  

П = П୮ + Пୱ + V                                                   (1)  
Where, 
П୮ = the strain energy stored in the plate. 
Пୱ = the strain energy stored in the soil, and 
V = potential energy of the external loads. 
In this model, the loads act on the plate domain in the lateral 
direction only and can consist of uniformly distributed loads 
on full plate or patch loads, line loads, concentrated loads, 
moments and any combination. 
The strain energies of the plate and soil may be written as 

П୮ =
1

2
න ቆ

∂ଶw

∂xଶ
,
∂ଶw

∂yଶ
, 2

∂ଶw

∂x ∂y
ቇ

Ω
[D] ቆ

∂ଶw

∂xଶ
,
∂ଶw

∂yଶ
, 2

∂ଶw

∂x ∂y
ቇ

୘

dxdy  

(2) 

Пୱ =
ଵ

ଶ
∫ ∫ ∫ ቀσ୶ε୶ + σ୷ε୷ + σ୸ε୸ + τ୶୷γ

୶୷
+ τ୷୸γ

୷୸
+

∞

ି∞

∞

ି∞

ୌ

଴

τ୸୶γ
୸୶) dxdydz  (3) 

V = −
1

2
න q

Ω
wdxdy                                                (4) 

Where, w = the vertical displacement of the plate i.e. 
displacement in z - direction, 
q = the applied distributed load, 
σ, τ = normal and shear stress in the elastic foundation, 
ε, γ = normal and shear strain in the elastic foundation, 
H = depth of the subsoil, 
Ω = domain of the plate, 
[D] = Plate rigidity matrix. 

[D] =
୉୦య

ଵଶ(ଵିνమ)
቎

1 ν 0
ν 1 0

0 0
ଵିν

ଶ

቏                       (5)  

E = the modulus of elasticity of the plate, 
h = thickness of the plate, and 
ν = Poisson's ratio of the plate. 
Vlasov suggested that the functions of u, v and w can be 
expressed as u (x,y,z) = 0; v (x,y,z) = 0; w (x,y,z) = w (x,y) 
φ (z). Where φ (z) is the function describing the variation of 
the function w from the top of the soil to its bottom such that 
φ (0) = 1 and φ (H) = 0. It is further assumed that the 
thickness of the plate is small, so that the displacements of 
the surface of the soil are equal to the displacements of the 
middle surface of the plate, w(x,y,0) = w(x,y). 
Using the strain-displacement equations of elasticity 
(Timeshenko) and the mentioned assumptions, total 
potential energy of the plate-soil system can be written as 
П

=
1

2
න ቆ

∂ଶw

∂xଶ
,
∂ଶw

∂yଶ
, 2

∂ଶw

∂x ∂y
ቇ

Ω

[D] ቆ
∂ଶw

∂xଶ
,
∂ଶw

∂yଶ
, 2

∂ଶw

∂x ∂y
ቇ

୘

dxdy

+
1

2
න [kwଶ + 2t(∇w)ଶ]

Ω
dxdy −

1

2
න q

Ω
wdxdy      (6) 

 

 

Figure 1 Finite plates resting on two parameters Vlasov 
foundation 

 
Where k and 2t are the soil parameters defined as 

k =
E଴

(1 − ν଴
ଶ)

න ൬
dφ

dz
൰

ଶୌ

଴

dz                               (7 a) 

2t =
E଴

2(1 + ν଴)
න φଶ(z)

ୌ

଴

dz                               (8 a) 

E଴ =
Eୱ

(1 − νୱ
ଶ)

  and  v଴ =
νୱ

(1 − νୱ)
 

φ(z) =
sinhγ(1 −

୸

ୌ
)

sinhγ
 

Es, νs = Young’s modulus of elasticity and Poisson’s ratio of 
soil.  
E0, ν0 = Effective modulus of elasticity and Poisson’s ratio 
of soil 

k =
Eୱ(1 − vୱ)γ

(1 + vୱ)(1 − 2vୱ)H
൬

sinhγcoshγ + γ

2sinhଶγ
൰  (7 b) 

& 2𝑡 =
EୱH

2γ(1 + vୱ)
൬

sinhγcoshγ − γ

2sinhଶγ
൰           (8 b) 

For thin layer variation of 

φ(z) = ቀ1 −
z

H
ቁ 

∴  k =
Eୱ(1 − vୱ)

H(1 + vୱ)(1 − 2vୱ)
                               (7 c) 

𝑎𝑛𝑑 2𝑡 =
EୱH

6(1 + vୱ)
                                            (8 c) 

γ parameter denotes the vertical deformation within subsoil. 
Using variational principles and minimizing the total 
potential energy of Equation (6) by taking variations in w 
and φ yields [14] 

δП = න (D∇ସw − 2t∇ଶw + kw − q)δwdxdy
Ω

 

+ න ቆ−m
∂ଶφ

∂zଶ
+ nφቇ

ୌ

଴

δφdz 

+boundary condition = 0                                   (9) 

Where m = න න E
∞

ି∞

∞

ି∞
wଶdxdy and  

n = න න Gୱ

∞

ି∞

∞

ି∞
ቈ൬

∂w

∂x
൰

ଶ

+ ൬
∂w

∂y
൰

ଶ

቉ dxdy 

E =
Eୱ(1 − νୱ)

(1 + νୱ)(1 − 2νୱ)
 and Gୱ =

Eୱ

2(1 + νୱ)
 

 
Since the variations δw and δφ are not equal to zero, the 
terms in the parentheses and boundary conditions must be 
equal to zero. 



Dutta et al. / ASPS Conference Proceedings 1: 1531-1537 (2022) 

1533 

Therefore the field equation in the domain, Ω, can be written 
as 

D∇ସw − 2t∇ଶw + kw = q                                  (10) 

∇ଶ= Laplacian operator =
∂ଶ

∂xଶ
+

∂ଶ

∂yଶ
 

∇ସ= Bi − harmonic operator =  ∇ଶ∇ଶ=
∂ସ

∂xସ
+

2 ∂ସ

∂xସ
+

∂ସ

∂yସ
 

Outside the plate domain, the field equation is 
−2t∇ଶw + kw = 0                                               (11) 
The second expression within the parentheses in Equation 
(9) is the field equation for the deformation pattern of the 
soil in the vertical direction. The equation is 

−m
∂2φ

∂z2 + nφ = 0                                                (12) 

The Solution of Eq. (12) with the boundary conditions φ (0) 
= 1 and φ (H) = 0 yields 

φ(z) =
sinhγ(1 −

z

H
)

sinhγ
                                           (13) 

2.2 Finite element formulation 
It has four corner nodes and each node is associated with 

three degrees of freedom.  

u(x, y, x) = −z
𝜕𝑤଴

𝜕𝑥
; v(x, y, z) = −z

𝜕𝑤଴

𝜕𝑦
 

and w(x, y, z) = w଴(x, y). 
The nodal displacement at i୲୦ node  

{δ୧}  = ቊw୧ ൬
∂w

∂x
൰

୧
൬

∂w

∂y
൰

୧

ቋ

୘

 

The element displacement vector is defined as {𝑑௘} =
{𝑑ଵ𝑑ଶ𝑑ଷ𝑑ସ}்For four nodded elements. 
The element is based on thin plate theory. Hence, it is 
sufficient to prescribe variation of transverse displacement w 
on element region.  

𝜀௫௫ =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕ଶ𝑤଴

𝜕𝑥ଶ
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∂ଶN
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⎥
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⎥
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;  

[𝐵௕] = [𝐵௕ଵ𝐵௕ଶ … … … 𝐵௕ଵ଺]for four nodded elements. 

 

Figure 2 PBR4 plate elements 

 

𝐶ଵଵ =
𝐸

(1 − 𝜈ଶ)
𝑎𝑛𝑑𝐺 =

𝐸

2(1 + 𝑣)
; 

𝐶ଶଶ = 𝐶ଵଵ; 𝐶ଷଷ = 𝐶ଵଵ; 𝐶ଵଶ = 𝑣𝐶ଵଵ; 𝐶ଵଷ = 𝐶ଵଶ; 
𝐶ଶଵ = 𝐶ଵଶ; 𝐶ଶଷ = 𝐶ଵଶ; 𝐶ଷଵ = 𝐶ଵଶ; 
𝐶ଷଶ = 𝐶ଵଶ; 𝐶ସସ = 𝐺; 

∴  [𝐶௕] = ൥

𝐶ଵଵ 𝐶ଵଶ 0
𝐶ଶଵ 𝐶ଶଶ 0
0 0 𝐶ସସ

൩ ; 𝐷ୠ = න z[Cୠ]

౞

మ

ି
౞

మ

𝑑𝑧 

[Dୠ] =
Ehଷ

12(1 − νଶ)
൦

1 ν 0
ν 1 0
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1 − ν

2

൪ 

𝐻𝑒𝑛𝑐𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥, 
[𝐾௕] = [𝐵]்[𝐷௕][𝐵];  

[𝐾௕] = න න [𝐵௕]்[𝐷௕][𝐵௕]|𝐽|𝑑𝑠𝑑𝑡
ଵ

ିଵ

ଵ

ିଵ

 

Following usual steps, the bending is expressed as 

[𝐾௕] = ෍ ෍ 𝑊௜𝑊୨|𝐽|[𝐵௕]்[𝐷௕][𝐵௕]

ଶ

௜ୀଵ

ଶ

୨ୀଵ

 

From these equations, it is observed that full 2 × 2 Point 
Gauss-Legendre-type quardature is adopted for bending 
stiffness. 
Considering a structural element which has a differential 
area ‘dA’ in contact with the foundation the lateral 
deflection of area ‘dA’ normal to the foundation is, w = 
[Nf]{d } 
The strain energy Ur in a linear spring is given by eq. 

=
ଵ

ଶ
𝑘𝑤ଶ 

𝑈௥ =
ଵ

ଶ
∫ 𝑘𝑤ଶ 𝑑𝐴;  k is the soil first parameter. 

𝑤ଶ = 𝑤்𝑤𝑤ଶ =  {𝑑}்ൣ𝑁௙൧
்

ൣ𝑁௙൧{𝑑} 

𝑆𝑡𝑟𝑎𝑖𝑛𝑒𝑛𝑒𝑟𝑔𝑦𝑈௥ =
1

2
න 𝑘{𝑑}்ൣ𝑁௙൧

்
ൣ𝑁௙൧{𝑑} 𝑑𝐴 

𝑈௥  =  
1

2
{𝑑}்ൣ𝐾௙൧{𝑑} 

In which the foundation stiffness matrix for the element 

is,ൣ𝐾௙൧ = ∫ 𝑘ൣ𝑁௙൧
்

ൣ𝑁௙൧ 𝑑𝐴 

ൣ𝐾௙൧ = 𝑘𝑎𝑏 න න ൣ𝑁௙൧
்

ൣ𝑁௙൧
ଵ

ିଵ

ଵ

ିଵ

𝑑𝑠𝑑𝑡                   (14) 

ൣ𝐾௙൧ = 𝑘 න න ൣ𝑁௙൧
்

ൣ𝑁௙൧
ଵ

ିଵ

ଵ

ିଵ

|𝐽|𝑑𝑠𝑑𝑡                  (15) 

If the problem deals with a plate on elastic foundation, [Nf] 
is identical to the shape function matrix [N] of the plate. 
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Figure 3 the length of a differential element ‘dx’in the 
deformed position, ‘ds’, can be expressed as 

𝑑𝑠 = ඥ(𝑑𝑥)ଶ + (𝑑𝑤)ଶ = 𝑑𝑥ඨ1 + ൬
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቉ 
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1

2
൬
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൰

ଶ

𝑑𝑥 

Strain energy stored by foundation parameter ‘2t’ is given 
by 
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1

2
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்
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Similarly for y-direction 

𝑤ℎ𝑒𝑟𝑒ൣ𝐾௘௬൧ = න 2𝑡ൣ𝑁௙′൧
்
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௕
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∴ 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑓𝑜𝑟𝑠ℎ𝑒𝑎𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 2𝑡𝑖𝑠 

[𝐾௘] = 2𝑡 ඵ[𝑆்𝑆 + 𝑅்𝑅]𝑑𝐴 

[𝐾௘] = 2𝑡 න න ቆ
1

𝑎ଶ
൤
𝜕𝑁

𝜕𝑠
൨

்

൤
𝜕𝑁

𝜕𝑠
൨

ଵ

ିଵ

ଵ

ିଵ

+
1

𝑏ଶ
൤
𝜕𝑁

𝜕𝑡
൨

்

൤
𝜕𝑁

𝜕𝑡
൨൰ |𝐽|𝑑𝑠𝑑𝑡 

[𝐾௘] = 2𝑡𝑎𝑏 න න ቆ
1

𝑎ଶ
൤
𝜕𝑁

𝜕𝑠
൨

்

൤
𝜕𝑁

𝜕𝑠
൨

ଵ

ିଵ

ଵ

ିଵ

+
1

𝑏ଶ
൤
𝜕𝑁

𝜕𝑡
൨

்

൤
𝜕𝑁

𝜕𝑡
൨൰ 𝑑𝑠𝑑𝑡 

The element load vector for a plate due to transverse 
distributed load of q per unit area acting top of the plate 

{𝑓} = 𝑞 ∫ ∫ [𝑁]்ଵ

ିଵ

ଵ

ିଵ
|𝐽|𝑑𝑠𝑑𝑡. 

𝐹𝑜𝑟𝑐𝑒𝑣𝑒𝑐𝑡𝑜𝑟𝑓𝑜𝑟𝑎𝑝𝑜𝑖𝑛𝑡𝑙𝑜𝑎𝑑 
{𝑓} = [𝑁ௗ]்[𝐹] 
The element load matrix for n nodded plate due to transverse 
distributed load of q per unit area acting top of the plate 

{𝑞௜} = 𝑞 ෍ ෍ 𝑊௜𝑊௝|𝐽|𝑁௜

ଶ

௝ୀଵ

ଶ

௜ୀଵ

 

Integration is carried out using 2 × 2 Gauss-Legendre 
integration. 
{𝑓} = {𝑞ଵ𝑞ଶ … … … … . 𝑞ଵଶ}்                 (16) 
For  four nodded elements. 

Similarly a typical sub-matrix for foundation parameter 
corresponding to i - th node is 

ൣ𝐾௙௜൧ = 𝑘 ෍ ෍ 𝑊௜𝑊௝|𝐽|𝑁௜
்𝑁௝

ଶ

௝ୀଵ

ଶ

௜ୀଵ

 

൛𝐾௙ൟ = ൛𝐾௙ଵ𝐾௙ଶ … … … … . 𝐾௙ଵଶൟ
்

                  (17) 
For four nodded elements. 
And a typical sub-matrix for foundation second parameter 
corresponding to i-th node is  

ൣ𝐾௘௜
൧ = 2𝑡 ቌ෍ ෍ 𝑊௜𝑊௝|𝐽|

𝑑𝑁

𝑑𝑥 ௜

ଶ

௝ୀଵ

ଶ

௜ୀଵ

+ ෍ ෍ 𝑊௜𝑊௝|𝐽|
𝑑𝑁

𝑑𝑦
௜

ଶ

௝ୀଵ

ଶ

௜ୀଵ

ቍ 

Stiffness matrix of four nodded elements 
[𝐾௘] = [𝐾௘ଵ𝐾௘ଶ … … … . . 𝐾௘ଵ଺]                         (18) 
[𝐾] = [𝐾௕] + ൣ𝐾௙൧ + [𝐾௘]                                  (19)  

𝐻𝑒𝑛𝑐𝑒𝑜𝑏𝑡𝑎𝑖𝑛[𝑥] = [𝐾]ିଵ{𝑓}(20) 
Equivalent Boundary Forces at the Nodes 
Outside the plate domain for a rectangular plate with 
dimensions of 2a in the x direction and 2b in the y direction., 
the equivalent boundary forces due to the infinite soil 
domain on the plate boundary (Turhan [14]). There are two 
type of stiffness to be considered. One is axial stiffness 
related to the displacement of the plate boundary in the 
transverse direction, and the other type is a rotational 
stiffness related to the rotation of the plate at its edge. Thus 
the effect at boundary other than corner of the soil region is 
modelled by adding equivalent to the stiffness term and for a 
corner region, as shown in Figure 4. Minimizing the energy 
with respect to displacement at that Point, the equivalent 
corner reaction is, R=1.5twc. 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑓𝑜𝑟𝑐𝑜𝑟𝑛𝑒𝑟𝑛𝑜𝑑𝑒 =
3

2
𝑡                  (21) 

Thus the effect at the corner node of the soil region is 
modelled by adding 3t/2 to the stiffness term representing 
the corner displacement. Vertical and rotational reaction 
forces for a continuous boundary can be obtained by 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 = 𝑎√2𝑘𝑡;                                          (22) 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 = 𝑎
1

2
2𝑡ඨ

2𝑡

𝑘
(23) 

Where ‘a’ is the tributary length of respectivenode. 
 
 

 
Figure 4 illustration of a rectangular plate-soil surface 

divided into regions. 
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Figure 5 Forces on the boundary nodes.

Q = a√2t k w and R = 0.75 × 2t ×  wୡ 
Where w and wc is the deflection of the respective node.

2.3 The iterative procedure 

In this model, the solution technique is an iterative process 
which is dependent upon the value of the γ parameter. 
Therefore, γ is initially set equal to one and φ is calculated. 
These values are used for the computation of the values of 
sub-grade reaction, k, and soil shear parameter, 2t, from Eqs. 
(7a) and (8a). With these values of k and 2t, the total 
coefficient matrix of the plate-soil system is constructed and 
the set of simultaneous equations is solved to find the 
displacements at discrete Points in the plate. Next the value 
of γ is calculated using the plate displacement values found 
in the previous step. A comparison between this calculated 
value of γ and the initial by assumed 
calculated γ is then made. If the difference between the two 
successive γ values is within a prescribed tolerance, the 
analysis is stopped. Otherwise, iteration is performed and the 
process is repeated until convergence is obtained. Therefo
the mode shape parameter γ may be calculated at the end of 
any analysis step in terms of vertical displacements of the 
foundation-subsoil system. For more details of Modified 
Vlasov model is available in [4, 12, 14 and 15]
Now how obtained the γ parameter 

ቀ
γ

H
ቁ

2

=
1 − 2v

2(1 − v)

∫ ∫ (∇w)2dxdy
∞

ି∞

∞

ି∞

∫ ∫ (w)2dxdy
∞

ି∞

∞

ି∞

            

The integrals in equation (24) may be calculated in terms of 
the nodal displacements of the subsoil shear element within 
plate domain is 

න න (∇w)2dxdy
a

ିa

b

ିb
= ෍

1

2t
[w]T[Ke]

n

iୀ1

[w]    (

and න න (w)2dxdy
a

ିa

b

ିb
= ෍ A[wi]

2

m

iୀ1

              

Where n, m and A represent the element number, the node 
number and the tributary area of node i, respectively.

Figure 6 4 Nodded subsoil shear element
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is the deflection of the respective node. 

In this model, the solution technique is an iterative process 
which is dependent upon the value of the γ parameter. 
Therefore, γ is initially set equal to one and φ is calculated. 

values are used for the computation of the values of 
grade reaction, k, and soil shear parameter, 2t, from Eqs. 

(7a) and (8a). With these values of k and 2t, the total 
soil system is constructed and 

ous equations is solved to find the 
displacements at discrete Points in the plate. Next the value 
of γ is calculated using the plate displacement values found 
in the previous step. A comparison between this calculated 
value of γ and the initial by assumed γ or previously 
calculated γ is then made. If the difference between the two 
successive γ values is within a prescribed tolerance, the 
analysis is stopped. Otherwise, iteration is performed and the 
process is repeated until convergence is obtained. Therefore, 
the mode shape parameter γ may be calculated at the end of 
any analysis step in terms of vertical displacements of the 

subsoil system. For more details of Modified 
Vlasov model is available in [4, 12, 14 and 15] 

   (24) 

The integrals in equation (24) may be calculated in terms of 
the nodal displacements of the subsoil shear element within 

] (25)   

(26) 

Where n, m and A represent the element number, the node 
number and the tributary area of node i, respectively. 

 
subsoil shear element 

By putting 2t = 0 the foundation model reduced to the well 
known Winkler model (single parameter model) .By putting 
2t = 0 and k = 0 the foundation model become applicable to 
plate without foundation. 
For more details of Modified Vlasov model is available 
[4, 9, 10 and 11] 
 

3. Results and discussion 

3.1 Convergence study and test the formulation

After the test of the present formulation and simultaneously 
a convergence study the mesh size of 1
reasonable result.  

3.2 Validation work 

An example has been chosen from the study done by Ozgan 
K, Daloglu AT [11] for validation of the present 
formulation. The results are presented in Fig. 
uniformly distributed load and concentrated load case. As 
seen from the curves for displacem
agreement with the results given in [
each other for any loading cases as the depth of the subsoil 
increases in case of displacement and for bending moments 
get fairly closer to each other and in excellent agre
with the results given in [11
The same example is considered by Buczkowski R, 
Torbacki W [8]  but only subsoil depth H = 15.24 m 
different B/h ratio from 2 to 10
for uniformly distributed loading case
displacements Fig. 10 are in excellent agreement with the 
results given in Ref [8].  

Figure 7 Comparison of deflection 
uniformly distributed

Figure 8 Comparison of bending moment M
with uniformly distributed load
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By putting 2t = 0 the foundation model reduced to the well 
known Winkler model (single parameter model) .By putting 
2t = 0 and k = 0 the foundation model become applicable to 

For more details of Modified Vlasov model is available in 

 

3.1 Convergence study and test the formulation 

the present formulation and simultaneously 
a convergence study the mesh size of 14 ×14 is decided for a 

An example has been chosen from the study done by Ozgan 
] for validation of the present 

The results are presented in Fig. 7 - 12 for 
uniformly distributed load and concentrated load case. As 
seen from the curves for displacements are in excellent 
agreement with the results given in [11] get fairly closer to 
each other for any loading cases as the depth of the subsoil 
increases in case of displacement and for bending moments 
get fairly closer to each other and in excellent agreement 

1] for any loading case. 
The same example is considered by Buczkowski R, 

]  but only subsoil depth H = 15.24 m 
different B/h ratio from 2 to 106 i.e. thin to thick plate limit 
for uniformly distributed loading case only the curves for 

are in excellent agreement with the 

 

Comparison of deflection w of a free plate with 
uniformly distributed load 

 

Comparison of bending moment Mxof a free plate 
with uniformly distributed load 
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Figure 9 Comparison of deflection w of a free plate with 
concentrated load 

 

Figure 10 Comparison of deflection w of a free plate with 
uniformly distributed load 

 

Figure 11 Comparison of bending moment Mxof a free plate 
with uniformly distributed load

 

Figure 12 Comparison of bending moment Mxof a free plate 
with concentrated load. 

 
Figure 13 Comparison of deflection w of a free plate with 
uniformly distributed load. 

3.3 The effectiveness of the formulation 

The previous example is considered with free boundary 
conditions. The properties of the plate-soil system are the 
same as before. The ratio of the plate thickness to the length 
of the shorter side of the plate is taken as 0.001, 0.002, 0.01, 
and 0.02. The example is solved by thin plate theory to show 
the effect of several subsoil depth, and thickness of the plate 
on displacements and bending moments. The displacement 
of the plate always decreases with increasing h/L ratio for a 
constant value of H for any loading cases while the bending 
moment of the plate increases as presented in Figs. 14–20, 
the curves get fairly closer to each other as the value of h/L 
increases. 

 

 
Figure 14 Changes of deflection, w of a free plate with 

uniformly distributed load 

 
Figure 15 Changes of bending moment Mxof a free plate 

with uniformly distributed load 
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Figure 16 Changes of deflection, w of a free plate with 

uniformly distributed load 

 
Figure 17 Changes of bending moment Mxof a free plate 

with uniformly distributed load 

 
Figure 18 Changes of deflection, w of a free plate with 

concentrated load 

 
Figure 19 Changes of deflection, w of a free plate with 

concentrated load 
 

5. Conclusions 

The accuracy and the efficiency of theelementfor different 
subsoil depth and different load cases and then a parametric 
study are performed. The effect of subsoil depth and 
thickness of plate on the displacement is larger for 
concentrated load case than for distributed load case, and 
this effect increases as h/L ratio increases for any subsoil 

depth. The observations indicate that the effect of the 
thickness of plate on the behaviour of the plate bending is 
always smaller for free plates. 
The presented examples show some of the advantages of the 
suggested approach for numerical solution of a plate on an 
elastic foundation. It gives opportunities for:  

 Application of various loads at an arbitrary Point or a 
region on the plate; 

 The approach can be performed on a thin plate 
effectively and efficiently; 

 The plate and the soil medium stiffness can vary 
smoothly along the plate’s length. 
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