
 ASPS Conference Proceedings 1: 

 

12th Structural Engineering Convention 

Available at 

 

*Corresponding author. Tel: +919678007257; E

Proceedings of the 12th Structural Engineering Convention (SEC 2022), NCDMM, MNIT 
© 2022 The authors. Published by Alwaha Scientific Publishing Services, ASPS. This is an open access article under the CC BY 
Published online: December 19, 2022 
doi:10.38208/acp.v1.515 

On Flexure-Shear Interaction in Fibre Model for the Analysis of RC Section

1 Department of Civil Engineering
2Department of Civil Engineering, 

Abstract 

This paper investigates the effects of flexure-shear interaction on the 
an improved version of fibre section model to consider the interaction
addition to the ‘plane-section’ hypothesis, for section kinematics
rotating, smeared-crack model with equivalent uniaxial stress
by using Mander model. The reinforcing bars are modelled using a uniaxial stress
shear interaction to reflect at the material point.
shear force-shear strain response for increasing levels of shear forces and bending moments. The results shows 
shear force-shear strain diagrams are significantly influenced by the
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1. Introduction 

Fibre models are widely used for the nonlinea
of RC framed structures as a general method for computing 
the force-deformation behaviour (CEB 1996)
model, cross-section is discretised into a large number of 
small areas (called fibres). The cross-section behaviour is 
obtained from the contribution of all the fibres. 
displacement based method, the general analysis procedure 
consists of finding the fibre strains from section kinematic
Subsequently, the fibre stresses are integrated to determine 
the section resultants (CEB 1996).The fibre
are related by an appropriate material model

The most of the early development in fibre models were 
aimed towards the element formulation and their solution 
procedure (Menegotto and Pinto 1973; Ciampi and 
Carlesimo 1986; Zeris and Mahin 1988; Spacone et al. 
1996; Neuenhofer and Filippou 1997; De Souza 2000). In 
these models, the shear is usually neglected. The cross
sectional behaviour is computed using the Bernoulli’s ‘plane 
section’ hypothesis and uniaxial material stress
relation for flexure. However, the assumption
reasonable for well-detailed, slender RC members (
shear span ratio), where the fibre are 
subjected to uniaxial stress (CEB 1996)
presence of shear force produces a multi-axial state of stress 
inside an RC member. The normal stress (axial and flexural 
stress) and shear stress interact among themselves and 
produce complex member behaviour (Park and Paulay 1975)
which is more evident in RC members with small shear 
ratio and in RC members within sufficient transverse 
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shear interaction on the force-deformation response of RC section. The analysis is performed using 
an improved version of fibre section model to consider the interaction of shear force. The model uses a supplementary shear strain field

for section kinematics. The concrete is modelled using a bi-
with equivalent uniaxial stress-strain relation in principal directions. The confining effect of stirrups is considered 

are modelled using a uniaxial stress-strain relation. The use of bi
interaction to reflect at the material point. The fibre section model is used to analyse an RC section to study the moment

shear strain response for increasing levels of shear forces and bending moments. The results shows 
are significantly influenced by the presence oflarge shear force and bending moment

shear interaction,concrete smeared-crackmodel, moment-curvature diagram, shear force

nonlinear analysis 
as a general method for computing 

(CEB 1996). In a fibre 
section is discretised into a large number of 

section behaviour is 
fibres. In a typical 
analysis procedure 

from section kinematics. 
stresses are integrated to determine 

fibre stress and strain 
an appropriate material model. 

fibre models were 
and their solution 

procedure (Menegotto and Pinto 1973; Ciampi and 
Carlesimo 1986; Zeris and Mahin 1988; Spacone et al. 
1996; Neuenhofer and Filippou 1997; De Souza 2000). In 

s usually neglected. The cross-
computed using the Bernoulli’s ‘plane 

section’ hypothesis and uniaxial material stress-strain 
assumptions are only 

slender RC members (large 
ratio), where the fibre are predominantly 

(CEB 1996). In general, the 
axial state of stress 

stress (axial and flexural 
interact among themselves and 

(Park and Paulay 1975) 
with small shear span 
sufficient transverse 

reinforcement. The use of 
traditional fibre model for these type of members
appropriate and leads to wrong prediction. T
development of fibre model with
important and necessary to improve 
fibre model to wide range of RC member

In last three decades, 
to extend the fibre model to consider the 
interaction (Ceresa et al. 2007)
terms of the adopted multi
section kinematic assumption
the section kinematics, two modelling approaches can be 
identified to account shear interaction in a sectional model 
(Bairan and Mari 2007): (a) fixed
and (b) inner-fibre equilibrium
based approach, a fixed shear strain/stress distribution is 
assumed for the whole analysis 
for the a priori distribution is either a uniform distribution or 
a shape corresponding to the
parabolic shear distribution
(Vecchio and Collins 1988;
al. 2009; Ferreira et al. 2014
equilibrium approach, the shear stress is
fundamental stress equilibrium condition (Vecchio and 
Collins 1988; Benz 2000; Bairan and Mari 2006; 
Kagermanov and Ceresa 2017). 
equilibrium approach is comparatively more accurate and 
computationally more involving. A qualitative 
of both the approaches can be found in Vecchio and Collins 
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deformation response of RC section. The analysis is performed using 
a supplementary shear strain field, in 
-axial stress-strain model based on a 

The confining effect of stirrups is considered 
The use of bi-axial model allow the flexure-

n RC section to study the moment-curvature and 
shear strain response for increasing levels of shear forces and bending moments. The results shows that the moment-curvature and 

shear force and bending moment respectively. 

, shear force- shear strain diagram 

use of simplifying assumption of the 
traditional fibre model for these type of members is not 

leads to wrong prediction. Therefore, the 
development of fibre model with normal-shear interaction is 

to improve the applicability of the 
ge of RC member.  

 many researcher have attempted 
to extend the fibre model to consider the normal-shear 

(Ceresa et al. 2007). The models differ, mostly in 
terms of the adopted multi-axial material model and the 

nematic assumption (Ceresa et al. 2007). Based on 
the section kinematics, two modelling approaches can be 
identified to account shear interaction in a sectional model 

): (a) fixed-pattern based approach, 
fibre equilibrium approach. In fixed-pattern 

shear strain/stress distribution is 
for the whole analysis process. The usual choice 

for the a priori distribution is either a uniform distribution or 
to the elastic solution (e.g., a 

parabolic shear distribution for rectangular section) 
Collins 1988;Petrangeli et al. 1999; Ceresa et 

al. 2009; Ferreira et al. 2014). Whereas, in inner fibre 
approach, the shear stress is estimated from the 

stress equilibrium condition (Vecchio and 
Collins 1988; Benz 2000; Bairan and Mari 2006; 
Kagermanov and Ceresa 2017). In general, the inner fibre 
equilibrium approach is comparatively more accurate and 
computationally more involving. A qualitative comparison 

both the approaches can be found in Vecchio and Collins 
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(1988). The above approaches have been used with different 
displacement-based and force-based element formulations. 
Most of the applications usually prefer a fixed-pattern based 
approach, due to their simplicity (e.g., Petrangeli et al. 1999; 
Filippou and Saritas 2006; Ceresa et al. 2009; Mullapudi 
and Ayoub 2009; Guner and Vecchio 2010; Navarro-
Gregori et al. 2013; Ferreira et al. 2014; Feng et al. 2017; 
Feng et al. 2019). Some of these models give good 
agreement with the experimental results but are, in general, 
computationally costly for use in large scale analysis. 
Therefore, there is a need of further development in fibre 
model to account the effect of shear interaction efficiently. 

The objective of the present study is to demonstrate the 
importance of considering flexure-shear interaction in the 
analysis of RC members. The paper presents a fibre model 
based on fixed-pattern approach. The model uses the ‘plane-
section’ hypothesis and a supplementary shear strain field 
for section kinematic. The concrete behaviour is expressed 
using a bi-axial, smeared-crack model based on modified 
compression field theory, MCFT (Vecchio and Collins 
1986) together with confining effect of stirrups (Mander et 
al. 1988). Uniaxial material models are used for longitudinal 
and transverse reinforcing bars. The fibre model is used to 
compute moment-curvature and shear force-shear strain 
response of an RC section. The effect of the interaction on 
the sectional responses is shown. 

2. Sectional Model 

The section is discretised into concrete and longitudinal 
reinforcing steel fibres as shown in Figure 1(b). The 
transverse steel is smeared over the section and is expressed 
in terms of steel reinforcement ratio sy associated with 

each concrete fibre. It is assumed that the concrete fibres 
resist the normal stress and shear stress thus are subjected to 
a biaxial stress state as shown in Figure 1(d). The shear 
resistance of steel fibre is neglected and these are assumed 
to carry the axial stress only. The sectional model is 
formulated based on a variation of Timoshenko beam theory 
with parabolic shear strain distribution. The stress resultants 
are obtained from the fibre stresses following the model 
proposed in Filippou and Saritas (2006) which is briefly 
discussed here for the sake of notation. 
 

 

Figure 1. (a) RC cross-section, (b) concrete fibres and 
reinforcing steel fibres, (c) axial strain and shear strain 

distribution, (d) stresses in a concrete fibre. 

Consider, the curvature ( ), the shear strain at the 

centroid ( 0 ) and the axial strain at the centroid ( 0 ) as the 

generalized section deformations. The axial strain and shear 
strain at a fibre location, iy , are related to the section 

deformations, by kinematic relations as 
 , 0xx i iy      (1) 

  , 0xy i iy    (2) 

where i  denotes the shape of the assumed shear 

distribution. For parabolic shear strain distribution it is 
calculated as (Filippou and Saritas, 2006) 
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Define is  and ik  as the fiber stresses and tangent 

matrix corresponding to ie . The section resultants intS and 

stiffness sK are obtained, from the virtual work principle as 
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The process of determining the stresses ( is ) and tangent 

matrix ( ik ) of concrete and reinforcing steel fibre is 

described in the following sections. 

2.1 Concrete Fibre State Determination  

The concrete fibres are assumed to resist axial stress 
and shear stress. The state of the concrete fibre is 
determined using a bi-axial constitutive relation based on 
modified compression field theory (MCFT) developed by 
Vecchio and Collins (1986).The MCFT is a rotating 
smeared-crack model. It assumes cracked concrete as an 
orthotropic material with equivalent uniaxial stress-strain 
relationship in principal strain directions. The stress-strain 
relationship are defined in terms of average stresses and 
strains (Vecchio and Collins, 1986). In this paper, the stress-
strain relation for concrete in compression in principal 
direction is modelled using Mander model (Mander et al. 
1988). This model is adopted to takes care of confining 
effect of stirrups on concrete constitutive model.The other 
assumptions of MCFT are: (i) the reinforced concrete as a 
composite made of plane concrete and smeared steel,(ii) The 
reinforcing steel are perfectly bonded to the surrounding 
concrete, (iii) the steel shear stress is neglected,(iv) the 
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principal concrete stress direction and principal strain 
direction are assumed to coincide(Vecchio and Collins, 
1986). 

Here, according to the MCFT, the concrete fibre is 
considered as a composite, made of plane concrete and 
smeared transverse steel (stirrup area).For, each concrete 
fibre is a transverse reinforcement ratio ( sy ) is defined and 

considered it as an internal property of the concrete fibre 
(Vecchio and Collins 1988). The behavior of the concrete 
fiber is obtained by adding the contribution from both the 
components. The following paragraphs briefly describe the 
process of concrete fibre state determination. 

The implementation of the MCFT on a concrete 
fibrerequires a complete strain tensor, to estimate the 
principal direction . The axial strain and shear strainare 
known from the assumed section kinematics relations. The 
remaining unknown value transverse strain yy is determined 

by imposing an equilibrium constrainton the total transverse 
stress (Rericha 1991). 

 0cy sy sy     (10) 

where cy , sy  are the stress in concrete and stirrup in the 

transverse direction, sy is the ratio of transverse 

reinforcement (stirrup area). As the transverse stress and 
strain values are dependent on each other, an iterative 
procedure is followed to estimate the required transverse 
strain value. The iterative procedure at the concrete fibre to 
determine the transverse strain value is given in Figure 2. 
An initial value transverse strain yy  is assumed to start the 

calculation and it is subsequently updated until the 
transverse equilibrium constraint is satisfied within a 
specified tolerance.  
Once the state of the fibre is established, the fibre stresses (

xx , yy , xy ) and the tangent material matrix D in 

 

 

Figure 2. Flow chart for concrete fibre state determination 

x-y direction are determined by adding the contribution 
of concrete and smeared steel as follows 
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where T  is the transformation matrix, 1c , 2c  are the 

principal stresses in concrete, ,1 2c D is the concrete tangent 

matrix in principal direction and syD  tangent matrix of 

smeared steel 
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where  is principal strain direction, 1cE , 2cE  are the 

tangent modulus of concrete in principal directions, and 

syE  is the tangent modulus of smeared steel, cG  is the 

approximate shear modulus, represented as (Vecchio and 
Collins 1986) 
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The computation of the section resultant ( intS ) and 

stiffness ( sΚ )in Equations 6 and 7,requires reduced stress (

is ) and stiffness matrices ( ik ). Therefore, static reduction is 

performed on the fibre stresses ( xx , yy , xy ) and the 

tangent material matrix ( D ) to condense out the contribution 
in the transverse direction, before applying them in section 
resultant and stiffness calculation. This study differs from 
earlier similar formulation (Filippou and Saritas 2006; 
Guner and Vecchio 2010; Navarro-Gregori et al. 2013) in 
terms of using concrete constitutive model which considers 
the confining effect of stirrups.    

2.2 Steel Fibre State Determination 

The reinforcing steel fibres are assumed to resist only axial 
stresses. The state of the fibers are determined from the 
usual axial strain and uniaxial stress-strain relation. The 
estimated axial stress and tangent modulus are used in the 
section resultant and stiffness computation (Equation 6, 7). 
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2.3 Uniaxial Material Stress-Strain Relations 

The average stress-average strain relation for concrete 
in compression in the principal axes is modelled by Mander 
model (Mander et al. 1988) to account the confining effect 
of stirrups. The effect of transverse tensile strain 1c  on the 

compression stress-strain relation (known as compression 
softening effect), is accounted using the factor   (Vecchio 

and Collins 1986) 

 1

0

1
1

0.8 0.34 c





 
 

  
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(19) 

where 0 is the concrete strain corresponding to the concrete 

compressive strength. 
The average stress-average strain relation for concrete 

in tension in the principal axes is modelled as linear elastic 
up to cracking followed by the tension stiffening curve, 
represented as (Vecchio and Collins 1986) 

 ,  for 
1 200

cr
c cr

c


  


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
 (20) 

The reinforcing steel and stirrups stress-strain 
relationship is expressed using bilinear (linear elastic-linear 
strain hardening)  stress-strain relation. 

3. Computational Algorithm 

The fibre model discussed in the previous section for 
sectional response analysis has been implemented in 
MATLAB (ver. R2014a). The displacement-controlled 
algorithmis used to calculate the force-deformation diagram 
of an RC section (Crisfield 1991). The flowchart for 
calculating the section shear force- shear strain diagram is 
shown in Figure 3.  

For section moment-curvature diagram corresponding 
to  the  changes  in  shear  force  is  carried out in the similar 

 
Figure 3. Flow chart for calculation of shear force-shear 

strain diagram 

manner. Keeping the axial force and shear force constant, 
moment is calculated for the incremental curvature as input 
iteratively. Thus, moment-curvature diagram and shear 
force-shear strain diagram has been generated for a given 
section. 

4. Numerical Study 

The cross-section studied to calculate moment-
curvature and shear force-shear strain diagram is the shear-
critical short column (specimen 1-1) tested by Bett et al. 
(1985) in double curvature. The dimensions of the column is 
given here for ready reference, the detailed description can 
be found in Bett et al. (1985). The length of the column is 
914 mm (3’). The column is subjected to a constant axial 
load of 288 kN (64.8 kip). The cross-section dimension are 
305 mm × 305 mm (12” × 12”). The concrete strength is 
29.9 MPa (4333 psi). Longitudinal reinforcement are eight 
bars of 19 mm (0.75”) diameter and yield stress of 462 MPa 
(67 ksi). Stirrups are of 6 mm diameter spaced at 203 mm 
(8”) and 414 MPa (60 ksi) yield stress.  

The moment-curvature and shear force-shear strain 
diagrams calculated for different shear force and moment 
levels are shown in Figure 4(a) and Figure 5(a) respectively. 
The axial load is the kept constant equal to the applied load 
in all the calculations. It is observed that for zero-shear 
condition the section has the maximum moment capacity. 
Similarly for zero-moment the section has the maximum 
shear capacity. On comparing, the lateral load levels 
corresponding to maximum moment and shear capacity, it is 
found that the section has amaximum moment capacity 
of164kNm (Figure 4),that corresponds to a lateral load 
of359kN ( 2 )V M L . The maximum shear capacity of the 

section is 244 kN (Figure 5). This indicates that the section 
is critical in shear. 
Further, for the peak load of 220 kN (49 kip)the moment at 
the column end section is estimated to be 100.5 kNm (Bett 
et al. 1985). The shear capacity corresponding to this 
moment predicted from Figure 5(b) is found to be around 
230 kN. The value is close to the reported value in the 
experiment. This shows the shear interaction model 
developed in this study is in good agreement with the 
experimental result. 

The moment-curvature diagram of the section for 
different constant shear forces is shown in Figure 4(a). It is 
observed that the shape of the moment-curvature diagrams 
are severely influenced by the presence of large shear force. 
The presence of shear force reduces the initial stiffness and 
moment carrying capacity of the section. The variation of 
moment capacity in plotted in Figure 4(b). It is observed that 
the reduction in moment capacity is negligible for small 
values shear force, but are significant in presence of higher-
level shear force. These observations are similar to Bairan 
and Mari (2004).  
The effect of constant moment on the shear force vs shear 
strain diagram is shown in Figure 5 (a) and (b). It is seen 
that the shear strength of the section decreases with 
increasing moment. The initial stiffness is also decreases 
with the increase in moment level. Similar observations 
have been made by Bairan and Mari (2004). Thus, flexure-
shear interaction model presented in this work is able to 
capture the observed behavior of beam-column section.  
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(a) 

 
(b) 

Figure 4. (a) Moment-curvature diagrams for different shear force, (b) variation of moment capacity with shear force 

 
(a) 

 
(b) 

Figure 5. (a) Shear force-shear strain diagram for different moment, (b) variation of shear capacity with bending moment

5. Conclusions 

A fibre model is implemented for analysis of RC 
section considering the flexure-shear interaction. The model 
uses the ‘plane-section’ hypothesis and a supplementary 
shear strain field for section kinematics. The concrete stress-
strain behavior is based on a bi-axial rotating smeared-crack 
model. The model also includes the strength enhancement 
due to confining effect of stirrup, strength reduction due to 
transverse tensile strain for concrete in compression and 
tension stiffening effect for concrete in tension. The model 
is used to study the effect of flexure-shear interaction on the 
moment-curvature and shear force-shear strain response of 
an RC section. 

It is observed that the moment-curvature and the shear 
force-shear strain responses are affected by the presence of 
shear and moments respectively. The peak load capacity and 
initial stiffness are found to be reduced in both cases. For 
small values of shear or moment, the reductions are small 
and can be neglected. However, for high values of shear and 

moment the reductions are quite significant. This shows the 
importance of the considering flexure-shear interaction in 
RC member analysis. Neglecting this effect will affects the 
accuracy of the prediction of RC members. 
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