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Abstract 

MEMS devices utilize electrostatics as preferred actuation method. The accurate determination of pull-in instability parameters (i.e., pull-in 
voltage and pull-in displacement) of such devices is critical for their correct design. It should be noted that similar to parallel plate capacitors, the 
electrostatic force between the surface of the deformable microbeam and stationary ground is non-linear in nature. Hence the analysis associated 
with MEMS devices is always inherently non-linear. In the literature, these devices have been majorly analyzed as Bernoulli-Euler microbeams 
with cantilever or clamped-clamped beam end conditions. However, Dileesh et al. (doi: 10.1115/ESDA2012-82536) have studied the static and 
dynamic pull-in instability behavior of slender cantilever microbeams by developing a six-nodded spectral finite element based on the 
Timoshenko beam theory (TBT-SFE). They have demonstrated the accuracy of the TBT-SFE by comparing their results with corresponding 
results of COMSOL-based three-dimensional finite element simulations. In addition, effects of shear deformation also start to play significant 
role as the beam thickness-to-length ratio increases. In this paper, authors have developed the TBT-SFE based on the work by Dileesh et al. for 
the case of statics. However, unlike Dileesh et al. where they have developed a six-nodded TBT-SFE, authors have investigated the best 
combination of number of nodes per element and total number of elements to carry out the study. For this purpose, authors have first calculated 
results of the maximum beam transverse displacement, for a shear deformable propped-cantilever microbeam under the action of uniformly 
distributed transverse load, obtained by utilizing the developed TBT-SFE with different combinations of number of nodes per element and total 
number of elements. These results are then compared with corresponding analytical results available in the literature to arrive at the best 
combination of number of nodes per element and total number of elements for the electrostatic-elastic analysis. In the second step, the finalized 
TBT-SFE is utilized to determine static pull-in instability parameters of narrow microbeams with various fixity conditions and beam thickness-
to-length ratios. This study highlights the importance of transverse shear effects on pull-in instability parameters of Timoshenko microbeams.  
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1. Introduction 

Micro-Electro-Mechanical Systems (MEMS) are being 
used in devices such as actuators, resonators and switches. 
Various actuation methods such as piezoelectric, 
electromagnetic or electrostatics can be used for operating 
MEMS. Out of which, the electrostatics is used as a 
preferred method for MEMS operation because of their 
higher energy density, lower power requirements and ease in 
microfabrication process (references [1, 2]).  

Most often, these systems are analysed as a unit 
comprising of a deformable microbeam and ground 
electrode. Just like in the case of parallel plate capacitors, 
the electrostatic force between the surface of the deformable 
microbeam and stationary ground for any applied voltage is 
non-linear i.e., it depends on an inverse of the square of the 
distance between two electrodes. However, the restoring 
force associated with the deformed microbeam is linear i.e., 
it depends on the amount of deformation that the microbeam 
undergoes under the action of an electrostatic force. As a 
result of this mismatch in two forces, the microbeam has an 
inherent upper limit on the amount of voltage that can be 

applied between two electrodes. If the applied voltage 
exceeds this critical value, the microbeam cannot resist the 
electrostatic force acting on it with its own restoring force. 
This causes a sudden collapse of the deformable microbeam 
on the stationary ground. The just-mentioned phenomenon 
is referred to as ‘the pull-in instability’ in the literature. The 
voltage and microbeam deformation at which the pull-in 
instability kicks in is referred to as the pull-in voltage and 
pull-in displacement respectively (Nathanson et al. [3]).  

In addition, beam transverse shear deformation effects, 
which are negligible for slender beams, become 
considerable for thick / shear deformable beams. In order to 
incorporate effects of the transverse shear in the beam 
deformation, various displacement-based first-order shear 
deformation beam theories (FSDTs) and higher-order shear 
deformation beam theories (HSDTs) have been proposed in 
the literature (Ghugal and Shimpi [4]). FSDTs as well as 
HSDTs try to address drawbacks of the Bernoulli-Euler 
beam theory (BEBT) which does not account for the beam 
transverse shear deformation as a result of its assumed 
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displacement field. The primary assumption with regard to 
FSDTs is that the straight line, which is normal to the 
undeformed beam neutral axis, remains straight but may or 
may not remain normal to the deformed beam neutral axis. 
As a result, FSDTs result in the constant transverse shear 
strain (and hence the constant transverse shear stress) 
through the beam thickness. Hence FSDTs require a shear 
correction factor while satisfying the constitutive relation 
relating the beam transverse shear stress with the beam 
transverse shear strain. Whereas, the primary assumption 
with regard to HSDTs is that the straight line, which is 
normal to the undeformed beam neutral axis, may or may 
not remain straight and may or may not remain normal to 
the deformed beam neutral axis. As a result, HSDTs result in 
the nonlinear variation of the transverse shear strain (and 
hence the nonlinear variation of the transverse shear stress) 
through the beam thickness. HSDTs do not require a shear 
correction factor while satisfying the constitutive relation 
relating the beam transverse shear stress with the beam 
transverse shear strain. As compared to FSDTs, HSDTs 
generally involve increased number of primary unknowns 
and require the specification of increased number of beam 
end conditions.  

Majority of the work on an electrostatic-elastic analysis 
of microbeams reported in the literature use the BEBT. 
However, Dileesh et al. [5] have studied the static and 
dynamic pull-in instability behavior of slender cantilever 
microbeams by developing a six-nodded spectral finite 
element based on the Timoshenko beam theory (TBT-SFE, 
references [6, 7]). They have demonstrated the accuracy of 
the TBT-SFE by comparing their results pertaining to 
slender microbeams with corresponding results of 
COMSOL-based three-dimensional finite element 
simulations.  

In this paper, the TBT-SFE is reformulated based on the 
work by Dileesh et al. [5] for the case of statics. However, 
the investigation of the best combination of number of nodes 
per element and total number of elements is carried out. For 
this purpose, authors have first calculated results of the 
maximum beam transverse displacement, for a shear 
deformable propped-cantilever microbeam under the action 
of uniformly distributed transverse load, obtained by 
utilizing the developed TBT-SFE with different 
combinations of number of nodes per element and total 
number of elements. These results are then compared with 
corresponding analytical results of Pakhare et al. [8] to 
arrive at the best combination of number of nodes per 
element and total number of elements for the electrostatic-
elastic analysis. In the second step, the finalized TBT-SFE is 
utilized to determine static pull-in instability parameters of 
narrow microbeams with various fixity conditions and beam 
thickness-to-length ratios. This paper aims to highlight the 
impact of transverse shear deformation effects on pull-in 
instability parameters of narrow Timoshenko microbeams 
which has not been, to the best of authors’ knowledge, 
addressed in the literature.  

2. Theoretical Details of the TBT-SFE  

An electrostatically actuated narrow shear deformable 
microbeam in a cantilever form is as shown in Fig. 1.  

 

 
Fig. 1. An electrostatically actuated narrow shear 

deformable cantilever microbeam.  

Governing equations of the TBT (Dileesh et al. [5]) for 
the case of statics are as follows:  
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Where symbols in Eqs. 1 and 2 have the same meaning as 
those used in Dileesh et al. [5]. Here, w and Φ represent 
primary unknowns of the TBT.  

Physically meaningful beam end conditions of the TBT 
with regard to the beam end x = 0, and can be defined at the 
beam end x = L based on a similar logic, for an illustrative 
purpose are as follows:  

 When the beam end x = 0 is simply-supported:  
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 When the beam end x = 0 is clamped:  

                                  0 0xw                                     (5)             

                                  0 0x                                     (6)
 

 When the beam end x = 0 is free:  
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Appropriate beam end conditions are chosen from Eqs. 
7 through 8 for illustrative examples considered in this 
paper.  

Patera [9] have introduced the spectral element method 
(SEM) with regard to problems pertaining to the 
computational fluid dynamics. Just like a regular finite 
element technique (FEM), the SEM is also a weighted 
residual technique. However, the SEM utilizes Lagrange 
interpolating polynomials (LIPs) of higher order along with 
Gauss-Lobatto-Legendre (GLL) integration points. Hence 
the SEM combines advantages of the FEM along with an 
exponential convergence of global spectral methods.  

Unlike the FEM where nodes of an element are 
generally spaced evenly, nodes of an element of the SEM are 
not evenly spaced. A one-dimensional spectral element with 
4 and 6 nodes along with their corresponding LIPs of order 
3 and 5 respectively are shown in Fig. 2 and Fig. 3 
respectively.  
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Fig. 2. A 4-noded spectral element and corresponding 
Lagrange interpolating polynomials of degree 3.  

 
Fig. 3. A 6-noded spectral element and corresponding 

Lagrange interpolating polynomials of degree 5.  

Where locations of these nodes are same as the location of 
GLL integration points, and are given by roots of the 
following expression:  
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p is a first derivative of the Legendre polynomial of 

degree p (Komatitsch and Vilotte [10]).  
In this paper, LIPs used for the geometrical mapping are 

the same as those used to discretise primary variables of the 
TBT. For a physical beam element having p + 1 nodes, this 
discretisation of the physical coordinate and primary 
variables is as follows:  
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Where Ni represents a LIP of degree p, the expression for 
which is as follows:  
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Here, a physical beam element of length ‘L’ is mapped into 
a reference beam element with ξ as its coordinate which 
spans -1 ≤ ξ ≤ 1. Any integration of a function in the 
reference element is carried out as follows:  
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Where J is the Jacobian of an elemental transformation.  
After performing the standard finite element 

formulation procedure (Reddy [11]), elemental equations are 
obtained as follows:  
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And the consistent load vector is given as follows:  
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For the microbeam applied by a uniformly distributed 
transverse loading  
                                         ( ) oq q                                   (14) 

Where qo is the amplitude of the applied transverse loading.  
For the microbeam under the action of the electrostatic 

force (without considering effects of the fringing field)  
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The non-linear SE electrostatic-elastic analysis is 
carried out using the Picard’s iterative method (Dileesh et al. 
[5]). The prescribed tolerance for the same is taken as 
0.000001. It should be noted that as the developed TBT-SFE 
utilizes higher-order LIPs, it is free from shear locking 
phenomenon and subsequent shear locking related issues.  

3. Illustrative Examples, Numerical Results and 
Discussion  

In the first step, the developed TBT-SFE is utilized to 
find out the maximum non-dimensional beam transverse 
displacement (w*

max = (100 wmax E I) / (qo L4)) of the shear 
deformable propped-cantilever rectangular beam having a 
thickness-to-length ratio of 0.20, shear correction factor of 5 
/ 6 and Poisson’s ratio of 0.3, with different combinations of 
number of nodes per element and total number of elements. 
These values are then compared with the corresponding 
analytical solution (w*

max = 0.6910, Pakhare et al. [12]). 
Following four cases have been considered to arrive at the 
best combination of number of nodes per element and total 
number of elements for the subsequent electrostatic-elastic 
analysis:  

1. The TBT-SFE with 6-noded element.  
2. The TBT-SFE with 14-noded element.  
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3. The TBT-SFE with 20-noded element.  
4. The TBT-SFE with 30-noded element.  

The results for w*
max for above-mentioned cases with 

different total number of elements is shown in Figs. 4 
through 6.  

 

Fig. 4. The variation of the w*
max with total number of 

elements for a 6-noded TBT-SFE, . . .  for the TBT-SFE 
results and - . . - for the analytical result.  

 

Fig. 5. The variation of the w*
max with total number of 

elements for a 14-noded TBT-SFE, . . .  for the TBT-SFE 
results and - . . - for the analytical result.  

 

Fig. 6. The variation of the w*
max with total number of 

elements for a 20-noded TBT-SFE, . . .  for the TBT-SFE 
results and - . . - for the analytical result.  

Authors have observed that a single TBT-SFE with 30-
noded element gives w*

max = 0.6910 which is the same as the 
corresponding analytical result reported in the literature. 
Hence a single TBT-SFE with 30-noded element is finalized 
to carry out the subsequent electrostatic-elastic analysis.  

For the electrostatic-elastic analysis, following 
properties for the microbeam and the system are considered:  

 The Young’s modulus, E = 169 × 109 Pa  
 The Poisson’s ration, µ = 0.3  
 The microbeam thickness, h = 10 µm  
 The microbeam width, b = 20 µm  
 The microbeam lengths, L = 50, 100, 200, 1000 µm  
 The initial gap, go = 1 µm  
 The permittivity of free space, εo = 8.8542 × 10-12 F 

/ m  
The pull-in voltage (V*

max) and pull-in displacement 
(w**

max) are defined as follows:  
                             4
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Following illustrative examples of microbeams are 
considered for the determination of their corresponding 
V*

max and w**
max:  

 The illustrative example 1 (the SS-SS microbeam)  
 The illustrative example 2 (the C-F microbeam)  
 The illustrative example 3 (the SS-C microbeam) 
 The illustrative example 4 (the C-C microbeam) 
The values of V*

max and corresponding w**
max for 

illustrative examples 1 through 4 for microbeams having 
various values of the beam thickness-to-length ratio are 
presented in Tables 1 through 4 respectively. For the 
comparison purposes, these results are compared with 
corresponding results of the Bernoulli-Euler beam theory 
(BEBT) as reported by Jia et al. [13]. The percentage 
difference reported against results of the BEBT are 
calculated as follows:  

 
% diff = ((The BEBT result / The TBT-SFE result) - 1) * 100  
 
Table-1. The V*

max and corresponding w**
max for the 

illustrative example 1 (the SS-SS microbeam).  
 V*

max 

 
 

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 3.7337 3.7127 3.6724 3.5399 

     

BEBT [13] 3.7170 3.7170 3.7170 3.7170 

 - 0.45 % 0.12 % 1.22`% 5.00 % 

 w**
max 

 
 

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 0.3897 0.3913 0.3917 0.3915 

     

BEBT [13] 0.3913 0.3913 0.3913 0.3913 

 0.41 % 0.00 % - 0.10 % - 0.05 % 
$ A shear correction factor (κ) with a value 5 / 6 is used.  
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Table-2. The V*
max and corresponding w**

max for the 
illustrative example 2 (the C-F microbeam).  
 V*

max  

  

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 1.3313 1.3113 1.2956 1.2693 

     

BEBT [13] 1.3021 1.3021 1.3021 1.3021 

 - 2.19 % - 0.70 % 0.50 % 2.58 % 

 w**
max 

  

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 0.4447 0.4463 0.4462 0.4458 

     

BEBT [13] 0.4476 0.4476 0.4476 0.4476 

 0.65 % 0.29 % 0.31 % 0.40 % 
$ A shear correction factor (κ) with a value 5 / 6 is used.  

 
Table-3. The V*

max and corresponding w**
max for the 

illustrative example 3 (the SS-C microbeam).  
 V*

max  

  

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 5.8138 5.7497 5.5972 5.1095 

     

BEBT [13] 5.7979 5.7979 5.7979 5.7979 

 - 0.27 % 0.84 % 3.59 % 13.47 % 

 w**
max 

  

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 0.3938 0.3944 0.3943 0.3938 

     

BEBT [13] 0.3944 0.3944 0.3944 0.3944 

 0.15 % 0.00 % 0.03 % 0.15 % 
$ A shear correction factor (κ) with a value 5 / 6 is used.  

Table-4. The V*
max and corresponding w**

max for the 
illustrative example 4 (the C-C microbeam).  
 V*

max  

  

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 8.7308 8.3978 7.9330 6.8125 

     

BEBT [13] 8.4035 8.4035 8.4035 8.4035 

 - 3.75 % 0.07 % 5.93 % 23.35 % 

 w**
max 

  

Theory h / L = 0.01 h / L = 0.05 h / L = 0.10 h / L = 0.20 

TBT-SFE $ 0.3966 0.3975 0.3970 0.3955 

     

BEBT [13] 0.3971 0.3971 0.3971 0.3971 

 0.13 % - 0.10 % 0.03 % 0.41 % 
$ A shear correction factor (κ) with a value 5 / 6 is used.  

From Tables 1 through 4, following observations can be 
made with regard to the pull-in voltage (V*

max) and pull-in 
displacement (w**

max) for the SS-SS, C-F, SS-C and C-C 
microbeams (illustrative examples 1 through 4 respectively):  

1. The V*
max gets reduced with increase in the beam 

thickness-to-length ratio as a result of beam 
transverse shear deformation effects. This effect gets 
magnified as the microbeam fixity moves from soft 
to hard i.e., in order of the C-F, SS-SS, SS-C and C-C 
microbeams. In other words, the softening of thick 

microbeams as a result of the beam transverse shear 
deformation affects V*

max.  
2. Beam transverse shear deformation effects have little 

to no effect on the w**
max.  

3. The BEBT is unable to capture the softening behavior 
of shear deformable microbeams as its displacement 
field does not account for the transverse shear in the 
beam deformation. As a result, the V*

max obtained by 
the BEBT remains overestimated for shear 
deformable microbeams. However, the w**

max 
obtained by the BEBT and corresponding values 
obtained by the TBT-SFE are more or less the same 
for all values of the beam thickness-to-length ratio 
considered.  

4. Concluding Remarks  

     In this paper, authors have developed the spectral 
finite element based on the Timoshenko beam theory (TBT-
SFE) for the electrostatic-elastic analysis of electrostatically 
actuated narrow shear deformable microbeams, by taking a 
que from the work reported by Dileesh et al. (doi: 
10.1115/ESDA2012-82536). However, authors have 
investigated the best combination of number of nodes per 
element and total number of elements to carry out the just-
mentioned study. For this purpose, authors have first 
calculated results of the maximum beam transverse 
displacement, for a shear deformable propped-cantilever 
microbeam under the action of uniformly distributed 
transverse load, obtained by utilizing the developed TBT-
SFE with different combinations of number of nodes per 
element and total number of elements. These results are then 
compared with corresponding analytical results reported in 
the literature to arrive at the best combination of number of 
nodes per element and total number of elements for the 
electrostatic-elastic analysis. This finalized TBT-SFE is then 
utilized to bring forward the effect that the beam transverse 
shear deformation has on pull-in parameters of narrow shear 
deformable microbeams with different fixity conditions. 
Obtained results are compared with corresponding results of 
the Bernoulli-Euler beam theory reported in the literature. 
To the best of authors’ knowledge, such analysis where the 
Timoshenko beam theory is utilized for portraying the 
effects of the beam transverse shear deformation on pull-in 
parameters of electrostatically actuated narrow shear 
deformable microbeams is not previously reported in the 
literature.  
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